
18th Australasian Fluid Mechanics Conference
Launceston, Australia
3-7 December 2012

Verification of a Compressible Flow Solver

R. J. Gollan 1 and P. A. Jacobs 2

1Centre for Hypersonics
The University of Queensland, Queensland 4072, Australia
2Queensland Centre of Excellence for Geothermal Energy
The University of Queensland, Queensland 4072, Australia

Abstract

In the development of computational fluid dynamics software,
the verification and validation of the implementation are impor-
tant tasks. In this paper, we present work towards the verifica-
tion of a compressible flow code,Eilmer. The verification case
uses a manufactured solution of inviscid supersonic flow to test
the numerical simulations, and is used to show that various flux
calculators are all implemented correctly in the code. We also
demonstrate how to assess the effects of grid nonuniformity on
the code’s order of spatial accuracy by using the manufactured
solution case.

Introduction

In this paper, we present work on the verification of a com-
pressible flow solver,Eilmer. Eilmer is a code which has been
developed at the University of Queensland, and has historically
been used to simulate the flow in hypersonic testing facilities.
More recently, the code base had been adapted and extended
for use in other application areas of compressible flow such
as interior ballistics modelling [2] and turbomachinery mod-
elling [14].

The Eilmer code continues to be under active development,
and, as such, it is extremely useful to have a set of benchmark
solutions to use for regression testing as development proceeds.
Recently, an ongoing effort was begun to establish certain bech-
mark solutions for the solver as verification and validition cases.
Here we use the terms ‘verification’ and ‘validation’ in the tech-
nical sense defined by Roache [10]: verification is defined as
“solving the equations right”; and validation is defined as “solv-
ing the right equations”.

To date,Eilmer has been verified using a range of cases that
test various aspects of its use as a hypersonic flow solver.
These cases include: use of a Manufactured Solution by
Roy et al. [12] to verify the implementation for inviscid super-
sonic flows, and viscous subsonic flows; use of an analytical so-
lution to an oblique detonation wave [9] to test the multi-species
chemically-reacting gas modelling capabilities; and comparison
to an analytical solution of shock tube flow of a gas in chemical
equilibrium. In this paper, we focus on just one of these cases:
verification of the implementation for inviscid supersonic flow.
We demonstrate how the manufactured solution can be used to
test the implementation of flux calculators and assess the effect
of various nonuniform grids on the order of spatial accuracy.
More generally, the verification work presented is also useful in
the development and testing of other compressible flow solvers.

Flow Solver Description

The Eilmer code began its life as a single block integrator of
the compressible Navier-Stokes equations,CNS4U [3], for two-
dimensional geometries (planar and axisymmetric). Over the
intervening years and a few name changes later (first tombcns
— multiple blocks but still 2D, and now toEilmer — for com-

bined 2D and 3D solver), a number of enhancements have been
added to the code [4], including:

• more general thermochemistry, including look-up tables
for a gas in chemical equilibrium;

• multiple-block capability with an MPI parallel implemen-
tation;

• a parametric and programmable front-end for specifying
geometry and grids;

• three-dimensional geometry;

• programmable boundary conditions and source terms; and

• finite-rate chemistry.

The number-crunching core of the code is written in C++, while
the pre- and post-processing stages are handled by a more user-
friendly suite of Python programs and loadable libraries.

The finite-volume formulation of the code and the associated
numerical schemes are described in the report by Jacobs [3] and
more recently in the code’s accompanying theory book [5]. The
code integrates the compressible Navier-Stokes equations in a
time-accurate manner. An explicit predictor-corrector update is
used to advance the solution in time. The time advancement
algorithm inEilmer treats each piece of physics in a timestep-
splitting (or operator-splitting) approach as advocated by Oran
and Boris [8] (see Chapter 11 of their text). Thus the order of
operations for a full multi-temperature reacting flow simulation
applied over a small timestep,∆t, is:

1. compute gas transport due to inviscid flux

2. compute gas transport due to viscous flux

3. compute change of gas state due to chemical reactions

4. compute change of gas state due to thermal relaxation

For the inviscid transport of gas, the properties at the cell in-
terfaces are reconstructed using a piecewise parabolic recon-
structor. This is employed for high-order reconstruction. For
low-order reconstruction, the adjacent cell centre properties are
taken as the interface values. Based on the flow properties at
cell interfaces, the inviscid flux is calculated using a flux cal-
culator. InEilmer there are four flux calculator options: 1) the
advection upstream splitting method (AUSM) by Liou and Stef-
fen Jr. [6], 2) the AUSMDV calculator by Wada and Liou [15],
3) the equilibrium flux method (EFM) by Macrossan [7], and 4)
an adaptive calculator which uses EFM near shocks and AUS-
MDV elsewhere.

The viscous transport update is based on the calculation of vis-
cous derivatives at the cell faces. The face-centred derivatives

are calculated as an average of the derivatives evaluated at the
primary cell vertices. Those cell-vertex derivatives are calcu-
lated by application of Gauss’ divergence theorem to convert
a surface integral around a secondary volume to the derivative
value within that volume, that is, at the vertex.

There are a number of various physical models of gases imple-
mented in the code for various application domains. In simu-
lation of hypersonics flows, for example, the gas models avail-
able are: mixture of ideal gases; mixture of thermally perfect
gases; gas mixture in thermochemical equilibrium, and mixture
of multi-temperature gases. The code is also able to compute
finite-rate chemical effects, and the effects of thermal nonequi-
librium in hypersonic flows.

Verification using the Method of Manufactured Solutions

The Method of Manufactured Solutions was first proposed by
Steinberg and Roache [13]. The method involves choosing an
analytical solution to the continuum partial differential equa-
tions that are solved by the code in question. The analytical
solution is then passed through the differential operators of the
governing equations to generate analytical source terms. The
idea is that with these source terms included in the numerical
simulation, the code should produce a numerical approxima-
tion to the original chosen analytical solution. Roache [11] ad-
vises that the solution should be non-trivial but analytical such
that cross-derivative terms of the governing equations are tested.
The numerical (discretised) solution may then be verified by
comparison to the exact analytical solution. For a code that is
behaving well, the error between the numerical and analytical
solutions should diminish with increased grid resolution. Fur-
thermore, it is possible to evaluate the order of the spatial accu-
racy by analysing the behaviour of successive grid refinements.
The Method of Manufactured Solutions was demonstrated as a
verification tool for compressible flow solvers by Roy et al. [12].
Roy et al. used the method to evaluate the order of spatial ac-
curacy for two finite-volume codes which solve the Euler and
Navier-Stokes equations. The verification case presented here
is the first of two cases reported by Roy et al. This case is for
the supersonic inviscid flow of an ideal gas, a flow regime that
is frequently simulated inEilmer calculations.

As part of the Method of Manufactured Solutions, an analytical
solution is chosen for the primitive flow variablesρ, p, u and
v. The particular solution chosen here is a function of sines and
cosines.

ρ(x,y) = ρ0+ρx sin
(aρxπx

L

)

+ρy cos
(aρyπy

L

)

(1)

u(x,y) = u0+ux sin
(auxπx

L

)

+uy cos
(auyπy

L

)

(2)

v(x,y) = v0+vx cos
(avxπx

L

)

+vy sin
(avyπy

L

)

(3)

p(x,y) = p0+ px cos
(apxπx

L

)

+ py sin
(apyπy

L

)

(4)

The values for the constants in Equations 1–4 appear in table 1.
The analytical solution is then substituted into the Euler equa-
tions and the analytical source terms are generated. The gener-
ation of source terms is tedious and error-prone to do by hand
thus a computer algebra system (Maxima [1]) was used for this
task.

The flow field for the numerical calculations was initialised to
the conditions given by theφ0 values given in table 1 and ex-
tends over the domain

0≤ x/L ≤ 1

0≤ y/L ≤ 1.

Table 1: Constants for the manufactured solution for a super-
sonic inviscid flow

Equation,φ φ0 φx φy aφx aφy

ρ (kg/m3) 1.0 0.15 -0.1 1.0 0.5
u (m/s) 800.0 50.0 -30.0 1.5 0.6
v (m/s) 800.0 -75.0 40.0 0.5 2/3
p (Pa) 1.0×105 0.2×105 0.5×105 2.0 1.0

The gas is modelled as a calorically perfect gas withγ = 1.4
andR= 287.0 J/(kg K), which are the values for ideal air. Exact
Dirichlet values given by the manufactured solution are speci-
fied in the ghost cells at the south and west boundaries, while the
north and east boundaries use an extrapolation boundary condi-
tion. All of the boundary conditions are first order in space, that
is, a linear extrapolation is used at the boundaries. The bound-
ary conditions are applied by using the programmable boundary
condition option implemented in the code. Similarly, the spe-
cialised source terms that drive the manufactured solution are
implemented using the programmable source terms option and
evaluated based on the cell-centre spatial coordinates.

In order to rigorously test the implementation, the verification
case has been computed a number of times exercising a range
of code input options. As such, the test case was computed us-
ing various flux calculators, various reconstruction schemes, on
different grid types, as a single block and as a multiple-block
arrangement, and with and without reconstruction limiters. We
will limit our focus here to verifying the flux calculator imple-
mentations and assessing the effect of different grid types.

To demonstrate verification, we need to show that the discretisa-
tion error drops as the grid is refined. Furthermore, the discreti-
sation error should drop as 1/r p wherer is the grid refinement
factor andp is the formal order of spatial accuracy. By com-
puting a discretisation error at various levels of mesh refine-
ment, an observed order of accuracy can then be compared to
the formal order of accuracy of the numerical scheme.Eilmer
is nominally 2nd order accurate in space when using the high-
order reconstructor; we seek to show that the observed order
of accuracy approaches this formal order of accuracy ofp= 2.
Following Roy et al. [12], theL2 andL∞ norms of the discreti-
sation error are assessed in order to establish an observed order
of accuracy. The norms on mesh levelk are computed as

L2normk =

(

∑N
n=1 |φn−φexact|

2

N

)1/2

(5)

L∞normk = max|φn−φexact| . (6)

An observed order of accuracy between two successive grid re-
finement levels is computed as

pk = log

(

Lk+1

Lk

)

/ log(r) (7)

whereLk is one of the error norms at thekth grid level,Lk+1 is at
the coarser level, andr is the grid refinement factor. In this case,
the grid refinement factor is 2 between all grid levels. In total,
the solutions were computed on five grids. The dimensions and
average cell width for each of the grids is listed in table 2.

Comparison of flux calculators

As mentioned earlier in the description of the flow solver, there
are a number of flux calculator options implemented in the code.
The verification case was computed using each of these flux cal-
culators in turn. The global discretisation errors for theL2 and

Table 2: Levels of grid refinement used for verification.

Grid Dimensions Cell width,∆x (m)

1 16×16 0.0625
2 32×32 0.03125
3 64×64 0.015625
4 128×128 7.8125×10−3

5 256×256 3.90625×10−3

L∞ norms for each of the flux calcultors tested are shown as
a function of cell width in figure 1(a). Figure 1(a) shows that
the discretisation error is reducing in a consistent manner as the
grid is refined for each of the flux calculators. The observed
order of spatial accuracy is computed by comparing the error at
two successive grid refinement levels. The results of computing
equation 7 for each case are plotted in figure 1(b). The pleas-
ing result is that the observed order of spatial accuracy has a
value of 2 which matches the formal order of spatial accuracy.
This is demonstrated in both theL2 andL∞ norms. This gives
confidence that there is no implementation bugs in the code for
these flux calculators. For this supersonic flow without shocks,
using the adaptive flux calculator is equivalent to selecting the
AUSMDV flux calculator because there are no shocks in the
flow. As such, the discretisation errors and order of accuracy
are identical. The adaptive flux calculator case was computed
as a confirmation that the shock detector is not erroneously sig-
nalling for the use of the EFM flux calculator.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.001 0.01 0.1

N
or

m

∆x, m

L2: AUSMDV
L2: AUSM

L2: adaptive
L2: EFM

L∞: AUSMDV
L∞: AUSM

L∞: adaptive
L∞: EFM

(a) norms

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.01 0.1

or
de

r
of

 a
cc

ur
ac

y,
 p

∆x, m

L2: AUSMDV
L2: AUSM

L2: adaptive
L2: EFM

L∞: AUSMDV
L∞: AUSM

L∞: adaptive
L∞: EFM

(b) observed order of accuracy

Figure 1: A comparison of various flux calculators used to com-
pute the Euler version of the Method of Manufactured Solutions
case.

Effect of grid types

The next comparison examined the effect of nonuniform grids
on the spatial order of accuracy. One of the main applications
of Eilmer is in the simulation of hypersonic impulse facili-
ties. The grids required to efficiently simulate these facilities
typically have moderate changes in cell size: large aspect ra-

tio cells in the long tube sections of the domain, and cells of
shorter aspect ratio near features of interest such as sudden
expansion regions into the test section. Therefore, the piece-
wise parabolic reconstructor was constructed to use informa-
tion about the change in cell size so that moderate changes in
cell size in the grid can be accommodated. The observed order
of spatial accuracy was assessed on three grids using this Euler
verification case. The three grids have been labelled ‘regular’,
‘stretched’ and ‘distorted’ in figure 2. The stretched grid has
clustering applied such that the grid is stretched and compressed
in both thex andy directions, but the cells are all orthogonal.
For the distorted grid, the straight line boundaries have been re-
placed by 3rd order B̀ezier curves. Note these curves do not
conform to the original domain, however the manufactured so-
lution is still appropriate to use because it is continuous beyond
the extents of the domain, being a function of sines and cosines.
For each grid, the AUSMDV flux calculator was used.

(a) regular grid

(b) stretched grid

(c) distorted grid

Figure 2: Various grids used when computing the Method of
Manufactured Solutions case

The behaviour of the discretisation error and the observed or-
der of accuaracy for the various grid types is shown in figure 3.
Note that the magnitude of discretisation error for the distorted
grid is not directly comparable to the regular or stretched grids.
This is because the distorted grid is solved on a different do-
main. The observed order of spatial accuracy on the stretched
grid is 2. This is a pleasing result because the stretched grid is
representative of the class of grid we use to simulate hypersonic
impulse facilities. The order of accuracy for the distorted grid
approaches 2 at higher grid resolutions. The increased order
of spatial accuracy at higher levels of grid refinement is most
likely due to the better alignment of the collection of cells used
in the piecewise parabolic reconstructor.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.001 0.01 0.1

N
or

m

∆x, m

L2: regular grid
L2: stretched grid
L2: distorted grid
L∞: regular grid

L∞: stretched grid
L∞: distorted grid

(a) norms

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.01 0.1

or
de

r
of

 a
cc

ur
ac

y,
 p

∆x, m

L2: regular grid
L2: stretched grid
L2: distorted grid
L∞: regular grid

L∞: stretched grid
L∞: distorted grid

(b) observed order of accuracy

Figure 3: A comparison of the various grid types and their effect
on order of spatial accruacy.

Conclusion

In recent and continuing work, we have been performing veri-
fication and validation of our in-house flow code,Eilmer. In
this paper, we presented the results from just one of these re-
cent verification efforts: a manufactured solution for an inviscid
supsersonic flow. The global error norms were assessed for five
levels of grid refinement and were shown to converge with an
observed order of spatial accuracy that matched the formal or-
der of accuracy, which is 2nd order. This was demonstrated for
each of the flux calculators implemented in the code. Further-
more, this verification case was also used to assess what effect
the use of nonuniform grids had on the observed order of ac-
curacy. It was shown that on stretched grids (but everywhere
orthogonal) the observed order of spatial accuracy is 2, while
the spatial accuracy on distorted grids approached 2 at higher
resolutions. The results of this verification exercise are a use-
ful addition towards demonstrating verification ofEilmer as a
compressible flow solver.

References

[1] Maxima, a computer algebra system, version 5.24.0,
http://maxima.sourceforge.net/, 2011.

[2] Gollan, R. J., Johnston, I. A., O’Flaherty, B. F. and Jacobs,
P. A., Development of Casbar: a two-phase flow code for
the interior ballistics problem, in16th Australasian Fluid
Mechanics Conference, Gold Coast, Queensland, 2007.

[3] Jacobs, P. A., Single-block Navier-Stokes integrator.,
ICASE Interim Report 18, 1991.

[4] Jacobs, P. A. and Gollan, R. J., The Eilmer3 code: User
guide and example book., Mechanical Engineering Report
2008/07, The University of Queensland, Brisbane, Aus-
tralia, 2010.

[5] Jacobs, P. A., Gollan, R. J., Denman, A. J., O’Flaherty,
B. T., Potter, D. F., Petrie-Repar, P. J. and Johnston,
I. A., Eilmer’s theory book: Basic models for gas dynam-
ics and thermochemistry., Mechanical Engineering Report
2010/09, The University of Queensland, Brisbane, Aus-
tralia, 2010.

[6] Liou, M. S. and Steffen, C. J., A new flux splitting
scheme.,Journal of Computational Physics, 107, 1993,
23–39.

[7] Macrossan, M. N., The equilibrium flux method for the
calculation of flows with non-equilibrium chemical reac-
tions.,Journal of Computational Physics, 80, 1989, 204–
231.

[8] Oran, E. and Boris, J.,Numerical Simulation of Reac-
tive Flow, Cambridge University Press, New York, USA,
2001, 2nd edition.

[9] Powers, J. M. and Aslam, T. D., Exact solution for multi-
dimensional compressible reactive flow for verifying nu-
merical algorithms,AIAA Journal, 44, 2006, 337–344.

[10] Roache, P. J., Verification of codes and calculations,AIAA
Journal, 36, 1998, 696–702.

[11] Roache, P. J., Code verification by the Method of Man-
ufactured Solutions,Journal of Fluid Engineering, 124,
2002, 4–10.

[12] Roy, C. J., Nelson, C. C., Smith, T. M. and Ober,
C. C., Verification of Euler/Navier-Stokes codes using the
Method of Manufactured Solutions,International Journal
for Numerical Methods in Fluids, 44, 2004, 599–620.

[13] Steinberg, S. and Roache, P. J., Symbolic manipulation
and computational fluid dynamics,Journal of Computa-
tional Physics, 57, 1985, 251–284.

[14] Ventura, C., Sauret, E., Jacobs, P. A., Petrie-Repar, P.,
Gollan, R. J. and van der Laan, P., Adaption and use of
a compressible flow code for turbomachinery design, in
European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010, Lisbon, Portugal, 2010.

[15] Wada, Y. and Liou, M.-S., An accurate and robust flux
splitting scheme for shock and contact discontinuities,
SIAM Journal on Scientific Computing, 18, 1997, 633–
657.

